点击展开

大数据挖掘

快速云:云计算技术在医疗大数据挖掘平台设计中的应用
2022-07-15 09:02:46 | 来源:火狐体育官方登录开户 作者:火狐体育直播吧

  摘要:信息技术是推动医疗发展的重要支柱,其在优化医疗流程、整合医疗资源、降低医疗成本以及提高医疗工作效率等方面发挥着重要作用。信息技术的快速发展将人类推进大数据时代,医疗信息系统同样也面临大数据带来的挑战。各国政府的大力支持为国内外医疗机构提供了进行大数据分析的条件,所以医疗行业将会和银行、保险等一起成为首先步入大数据时代的行业。该文主要阐述了云计算与大数据的联系,并对云计算技术在医疗大数据挖掘平台设计中的应用进行探讨。

  在海量数据时代环境下,以往的主流软件工具已经无法满足大规模数据的存储和计算要求,对于医疗行业来讲同样面临着大数据的挑战。云计算和大数据是相辅相成的,云计算技术为海量的、复杂的、多样化的大数据的存储和计算提供了有效平台,该平台下的数据挖掘技术可以在不受其他因素影响的条件下快捷地收集到可靠真实的医疗信息,而且云环境下的数据集存储具有较强的稳定性,进一步优化了数据挖掘模式。

  随着医疗信息化的发展,医疗数据规模迅速扩大,数据的种类和数量的变化令人难以置信,不论是病理分析图还是医疗影像都产生了大量的医疗数据。区域医疗数据虽然是医疗大数据的组成各个部分,但其数据来自百家医疗机构和百万人口的区域,一个患者的信息资料要保留50年以上,而且数据量呈不断增长趋势。医疗数据中每个患者的数据不仅包括临床诊断以及用药建议、医疗影像以及分析决策、(非)结构化文档,还包括患者大量的在线实时数据,仅仅一个社区医院就可以生成多个TB级甚至PB级的(非)结构化数据,所以说海量医疗数据名副其实。云计算技术是被称为是21世纪的技术和商业革命,如今已成为IT行业主流技术。云计算技术是在大数据环境下数据存储、数据计算以及数据动态分析要求越来越高的背景下产生的一种基础构架和商业模式,该模式可以为用于提供便捷的、快速的、可用的、足量的计算资源,并且用户按照用量付费,只需要进行少量的管理工作以及与云计算供应商进行必要的互动。

  云计算技术是在大数据背景下产生的,对于云计算来讲,大数据是一种重要应用环境,而对于大数据来讲,云计算则是其IT基础和驱动力,两者之间是相辅相成的。随着大数据规应用的广泛推广,云计算技术的重要性也越来越突出。在医疗数据规模以几何级形式增长的情况下,数据挖掘平台是医疗数据中病历数据、诊断检验数据、影像数据等内在数据得到有效应用的关键所在,所以基于云计算的医疗数据挖掘平台是医疗信息化的一个重要研究方向。

  数据挖掘技术的概念可定义为“从大量数据中获取有效的、新颖的、潜在有用的、最终可理解的模式的过程,能够发现隐含在大规模数据中的知识,从而指导决策,主要涉及特征化、区分、关联或相关分析、分类、聚类、演变分析等。”数据挖掘在金融、交通、军事、电子商务、医疗等等领域中得到广泛应用。相同其他领域,医疗领域中数据挖掘技术的应用有很大不同,因为医疗数据包括患者诊疗过程中的所有相关信息资料,例如诊断记录、影像资料、治疗决策、用药方案等等,这些数据除了包括结构化数据之外还包括大量的非结构化数据,因此医疗数据挖掘的应用效益和收获最大。基于医疗数据的复杂性,医疗数据挖掘也存在极大难度,这主要体现在两个方面,一是诊断记录、治疗决策、护理过程等复杂的医疗程序导致了医疗数据的海量性特点;二是医疗数据类型多样化,不仅包括数值型数据,还包括图像、语音、视频等等类型数据。总之,医疗数据的海量性和异构性为医疗数据挖掘带来极大难度,需要具有强大数据处理能力的技术提高数据挖掘的效率和准确性,这就是云计算。

  云计算是一种基于大数据的商业模式,其强大的数据存储、数据处理以及数据管理能力让大数据丰富的信息积淀不再是镜花水月,云计算在改变计算机运行模式的同时也正在改变这个世界。云计算以及其分布式结构是实现云构架的重要途径,云计算的应用实现了网格计算并行计算、分布式计算等概念,通过互连的计算机来完成计算任务,并根据应用需要获取各种资源和服务。中国电子学会将云计算技术定义为“云计算是一种基于互联网的、大众参与的计算模式,其计算资源(包括计算能力、存储能力、交互能力等)是动态、可伸缩、被虚拟化的,并以服务的方式提供”。云计算环境下的医疗数据挖掘平台的设计结构主要包括云计算环境、数据采集、数据清洗以及并行分析4关键个部分,如下图1所示。海量数据挖掘技术对云计算的应用主要是其低成本分布式并行计算环境,云计算的应用不仅极大减少了应用成本,同时也为海量数据挖掘提供更多的解决方案和途径。

  医疗大数据挖掘技术应用主要表现正在临床决策支持系统、医学图像挖掘、生物信息学研究以及促进公众健康等方面。1)数据挖掘技术在临床决策支持系统的应用:云环境下的数据分析、处理技术得到大幅度提升,这使医疗数据中非结构化数据的分析和处理分析是难题(例如图像分析和识别技术),对临床决策支持系统功能的进一步优化提高系统智能性。可以为医生对患者的诊疗提出有效建议,同时也可以将诊疗医生的大部分工作内容和时间流向护理人员,让医生摆脱繁琐咨询,有利于规范医疗工作流程,提高诊疗效率。2)医学图像挖掘:医学图像时医疗数据的重要组成部分,如今医学图像在医疗领域中的应用价值越来越高,例如CT、MRI、PET等等影像学资料为人体各种疾病或者损伤的诊断和治疗提供了有效手段。3)生物信息学-DNA分析:生物学研究领域开展的基因组计划产生了大量的基因组信息,基因信息的识别以及鉴定是基于工程的重要研究内容,将高效的数据挖掘技术应用于基因工程有利于进行基因信息分析,可挖掘潜在的更高价值的信息,为基因工程的研究提供决策支持。4)促进公众健康:利用医疗大数据分析技术可以对传染疾病进行快速检测,对疫情的发展态势进行实时监测、评估,并在此基础上提出有效应对策略。另外,利用大数据挖掘技术建立可以覆盖全国的患者电子病历数据库并及时准确地提供公众健康咨询,提高健康风险意识,这将有利于改善公众健康监控,降低传染病感染率,创造了极大的社会效益。

  云计算在医疗行业的应用是大数据时代医疗信息化的必然趋势,云计算作为一个新型资源共享平台为医疗信息应用提供了低成本、高质量的资源和服务,而云计算环境下的医疗信息服务也将新的建设平台。随着数据挖掘技术的不断发展,大数据时代环境下的医疗大数据挖掘技术数据处理能力将会进一步提高,以便更好地服务于人类。返回搜狐,查看更多

火狐体育直播吧
火狐体育官方登录开户

火狐体育直播吧

联系电话:176 0301 6881

邮箱:sales@finscm.com

火狐体育官方登录开户